
On the whole, the results of the investigation show that the proposed mathematical model 
of heat transfer is of sufficeint accuracy for engineering calculations, and may be used to 
determine the temperature fields and resulting heat fluxes in commercial furnaces. 

NOTATION 

xo, yo, zo, Po, Fo, minimal abscissa, ordinate, z coordinate, radius vector, and polar 
angle of zone, m, rad; Ax, by, Ax, Ap, A~, dimensions of the zones along the coordinates, m, 
rad; YE, ZE, PE, corresponding coordinates of the surface passing through the tube axes, ms 
ql, n2, angles between the z axis and the surfaces lying close to and far from the z axis, 
rad; ~E, angle between the z axis and the surface passing through the tube axes, rad; zn~, 
zn= , ZqE, z coordinates of the points of intersection of the corresponding surfaces with the 
z axis, m; Pij, radiation-transfer coefficients, W/K4; ~ij, coefficients of convective--turbu- 
lent transfer, W/K; Ti, T B, temperatures of zones i and ~; K; ~Jy, ~j~, Kronecker deltas; cj, 
free term of the j-th equation; N, total number of volume and surface zones. 
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NUMERICAL CALCULATION OF THE GENERALIZED ANGULAR EMISSION COEFFICIENTS 

IN TWO-DIMENSIONAL SYSTEMS 

V. G. Lisienko and Yu. K. Malikov UDC 536.3 

We describe a method of calculating the generalized angular emission coeffi- 
cients by expressing them in the form of finite series. 

The calculation of the generalized angular emission coefficients is the most important 
step in applying zonal methods to the calculation of heat exchange in various radiating sys- 
tems. The calculation of the generalized angular emission coefficients by direct integration 
is possible only in special cases [i]. The resulting formulas are complex and not very con- 
venient in engineering applications. This deficiency is also present in the approximate 
method developed in [2, 3]. An exception is the approximate method of [4,5], in which rela- 
tively simple analytical expressions can be obtained with the help of theorems on the mean. 
In this method, the generalized angular emission coefficient is written as a product of a 
geometrical angular coefficient and a certain average transmissivity of the medium. The 
latter is considered as a purely geometrinal characteristic of a radiating layer, and this 
leads to significant errors. 

In the present paper, the generalized angular emission coefficients are obtained for a 
two-dimensional system as finite series, where each term is a product of a geometrical angu- 
lar coefficient and the transmissivity of the medium. The resulting algorithm for the 
numerical computation of the generalized angular emission coefficients can be used to deter- 
mine the coefficients for two-dimensional systems of complicated geometry. In this approach, 
the amount of calculation is about i00-i000 times less than in the Monte Carlo method [5] 
which is usually used in these problems. 
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Fig. i. Cylindrical surface: a) pair of infinite strips; b) slot. 

Fig. 2. Determination of the generalized angular emission coefficients. 

It is well known that the generalized angular coefficients are defined in a similar way 
both for integral quantities in a series approximation formulation of the problem, and for 
the general case for the spectral quantities in each wavelength interval. Here for simpli- 
city we will omit the index denoting the spectral interval. 

We consider a pair of infinite strips along the z axis (Fig. la). The generalized angu- 
lar coefficient from surface Fi onto surface F k is defined by the relation [I] 

~k = Fil ~ ~ cos~cos~h~s z e x p ( - - L ( s ) ) d F f l F ~ ,  (1) 

(F i) (~) 

where L(s) ~ [ k(s)ds is the optical path of the ray. 
0 

We use a spherical coordinate system with origin at point N on the strip Fi, as shown 
in Fig. la. We assume that the attenuation coefficient of the medium does not depend on z. 

Then ] 1 j L~ 
L(s )=  k(x, v) d s =  ~ k(x,  g) d l =  

o cos~ cos, 
Integrating (i) with respect to the angke ~ using the above relation gives 

~z~--~ j'~M(L,Ocos~d~dFi, (2) 

(Fi) ~h(N) 
where 9k(N) i s  the se t  of angles  for  which rays leaving  poin t  N are  inc iden t  on g k and 

a/2 

M (L) -- j', exp (-- L/cos ~) cos 2~d,. 
--~12 

The function M(L) was introduced and tabulated in [6] in the calculation of the gener- 
alized angular coefficients in cylindrical systems for a medium with a constant attenuation 
coefficient. The latter restriction is not essential because (2) is valid more generally 
(when the attenuation coefficient of the medium depends on x and y). 

If the strips F i and F k are narrow enough, then L n for all rays leaving F i and incident 
on Fk will be approximately the same. Then the slowly varying function M(Ln) can be pulled 
out of the integral sign, and (2) can be replaced with the approximate relation 

2 
~k ~ ~h -- M (L~O. (3) 

We consider a pair of infinite cylindrical surfaces along the z axis whose cross sections 
in the xy plane are shown in Fig. 2. A medium with an attenuation coefficient dependent only 
on x and y occupies the space between the surfaces. We break up the surface F A into M A 
strips F i of identical area and surface F B into MB strips F k. Using (3) and the additivity 
of the angular emission coefficients, we obtain the approximate representation 

MN MB 

<4) 
i = l  h=l  
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TABLE i. 
Slot (Fig. Ib) 

Generalized Angular Emission Coefficients for a 

Sum (4) for different values of M A = M B 

3 I 5 I lo 

Absorption eoeff. 
of medium 

0,05 
0.1 
0,5 
1,0 

Generalized angular coeff.~A B 

0,3619 0,3630 0,3630 
0,3371 0,3448 0,3454 
0,2353 0,2401 0,2426 
0,1563 0,1645 0,1687 

GeneraHzed angular eoeff. ~ C  

0,2078 ~ I 0,2o,7 0,2077 
0,1895 0,1833 0,183t 
0,0701 0,0700 0,0700 
0,0222 0,0222 0,0222 

0,05 
0 , 1  

0,5 
1,0 

Data of [8] 

0,3630 
0,3455 
0,2434 
0,1704 

0,2077 
0,183I 
0,0700 
0,0222 

The coefficients ~ ~ can be efficiently calculated according to (4) since the geomet- 
rical angular emission coefficients between arbitrary cylindrical surfaces can easily be 
found using the methods of [7] without numerical integration. Also the optical properties 
of the medium are, as a rule, slowly varying functions of the coordinates and this insures 
a rapid convergence to the series (4) for large MA, M B. For example, in Table i we give the 
results for the angular coefficients for a slot (see Fig. ib) filled with an absorbing medium. 
Earlier these coefficients were obtained in [8] by numerical integration of (I) by the Gaus- 
sian method. It is clear that the series (4) converges very rapidly to the exact value, and 
accuracy sufficient for engineering applications can be obtained even when the surfaces are 
split into only three pieces. 

We consider now the similar representation of the generalized angular coefficients ~ ~ 
between a surface F A and a volume Vq (Fig. 2). Under the assumption that the optical prop- 
erties of the gas in the region between the surfaces are constant (which is ordinarliy as- 
sumed in this method), we have [i] 

~ q =  ~q" ; c~ z " (5)  

(F A) (Vq) 

The i n t e g r a l  o v e r  vo lume  i n  (5)  i s  w r i t t e n  i n  s p h e r i c a l  c o o r d i n a t e s  w i t h  t h e  o r i g i n  a t  
t h e  p o i n t  NEFh Then 

dVq = s z cos ~d,d~ds, cos ~k = cos T cos , ,  

where  a n g l e s  , and ~ a r e  d e f i n e d  a s  shown i n  F i g .  1.  Assuming  f o r  s i m p l i c i t y  t h a t  t h e  s u r -  
f a c e  bounding volume Vq is not concave, we obtain 

~I2 s~ 

where sa and s~ are the path lengths of the ray from point N to its entrance into volume Vq, 
and from N to its exit from Vq, respectively, and ~q(N) is the set of azimuthal angles 
such that rays leaving point N are incident in volume Vq. The assumption that the optical 
properties of the gas are constant in the region under consideration means that the inner 
integral in (6) can be calculated along the ray path. Then the integration with respect to 

can be carried out. The result is 

.. / ~ o 3 '  04 (7) 
~ q  = aq 1 J J ~  cos ~ (M (Ln ) -- M (Ln )) dFk 

kq nF A 
tFA) ~q(N) 

i. where L~ ~ k(x, y) dl, ] = 3, 4, with ~s, l~, the projections on the xy plane of ray paths up 
0 

until entry into volume Vq and exit from it, respectively (Fig. 2). 
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The result (7) is exact. In doing the numerical calculations it is convenient to divide 
the surface F A into M A identical narrow strips Fk, and the boundary of the radiating volume 
Fq (see Fig. 2) into Mq strips F i. Then the weakly varying function M(Ln) can be taken out 
from under the integral sign and we obtain in place of (7) the approximate expression 

M A Mq 

f l ~ l  i ~ l  

The g e n e r a l i z e d  a n g u l a r  emis s ion  c o e f f i c i e n t s  ~Opq from Vp to  Vq (F ig .  2) can a l s o  be 
r e p r e s e n t e d  as a sum 

Mq Mp 

~q .-~ F~h~ [M (Lkz)+ (Lh~) -- ~ k~) -- 

2akqkpV~ 
i~l  k~l  

which rapidly converges to the exact value when we decrease the size of the strips F i and F k 
into which the surfaces Fq and Fp bounding the radiating volume are split up. 

In practical applications of (4), (8), (9), it is necessary to calculate the function 
M(L), which in [6] is represented as an integral of modified Bessel functions. In engineer- 
ing calculations, the following approximation can be used with an error not exceeding 0.007: 

M (L) ~ 1.2852 exp (-- 1, IL) + 0.2852 exp (-- 2.053L). 

The uniformity of relations (4), (8), (9) significantly simplifies the computer program- 
ing and leads to a decrease in the amount of computation necessary to determine the general- 
ized angular emission coefficients. The error in the calculations can be estimated by com, 
paring the results when different numbers of terms are left in the series. The algorithms 
based on (4), (8),(9) are exceptionally fast and adaptable, hence they can be used for cal- 
culating generalized angular emission coefficients in two-dimensional systems of complicated 
geometry. 

NOTATION 

~ ~ ik' generalized and geometrical angular coefficients; k, ~, effective attenuation 
and absorption coefficients of the medium; s, Z, geometrical ray path and its projection on 
the xy plane; L(s), optical path of the ray; in, optical path of rays in the xy plane; Lik, 
optical thickness of the medium between the centers of strips F i and F k in the xy plane; 
Lmnik(m, n = 0, I, 2, 3, 4), the part of the optical path of rays (Fig. 2) propagating in 
the xy plane from strip F i to Fk; M(L), Mikk function; F, surface; V, volume. 
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